Data Stream-based Intrusion Detection System for Advanced Metering Infrastructure in Smart Grid: A Feasibility Study

Mustafa Amir Faisal
Zeyar Aung
John Williams
Abel Sanchez

Technical Report DNA #2012-05

April 2012

Data & Network Analytics Research Group (DNA)
Computing and Information Science Program,
Masdar Institute of Science and Technology,
PO Box 54224, Abu Dhabi, UAE.
Data Stream-based Intrusion Detection System for Advanced Metering Infrastructure in Smart Grid: A Feasibility Study

Mustafa Amir Faisal, Student Member, IEEE, Zeyar Aung, Member, IEEE, John R. Williams, Member, IEEE, and Abel Sanchez, Member, IEEE

Abstract—As Advanced metering infrastructure (AMI) is responsible for collecting, measuring, analyzing energy usage data, and transmitting these information from a smart meter to a data concentrator and then to a headend system in the utility side, the security of AMI is of great concern in smart grid’s deployment. In this paper, we analyze the possibility of using data stream mining for enhancing the security of AMI through an intrusion detection system (IDS), which is a second line of defense after the primary security methods of encryption, authentication, authorization, etc. We propose a realistic and reliable IDS architecture for the whole AMI system which consists of individual IDSs for three different levels of AMI’s components: smart meter, data concentrator, and AMI headend. We also explore the performances of various state-of-the-art data stream mining algorithms on a publicly available IDS dataset, namely, the KDD Cup 1999 dataset. Then, we conduct a feasibility analysis of using these data stream mining algorithms, which exhibit varying levels of accuracies, memory requirements, and running times, for the distinct IDS at AMI’s three different components. Our analysis identifies different candidate algorithms for different AMI components’ IDSs respectively.

Index Terms—Smart grid, advanced metering infrastructure, intrusion detection system, data stream mining.

I. INTRODUCTION

Smart Grid (SG) is a set of technologies that integrate modern information technologies with present power grid system. Along with many other benefits, two-way communication, updating users about their consuming behavior, controlling home appliances and other smart grid components remotely, monitoring power grid’s stability, etc. are unique features of SG. To facilitate such kinds of novel features, SG needs to incorporate many new devices and services. For communicating, monitoring, and controlling of these devices/services, there may also need many new protocols and standards. However, the combination of all these new devices, services, protocols, and standards makes SG a very complex system that is vulnerable to increased security threats — like any other complex systems are. In particular, because of its bidirectional, inter-operable, and software-oriented natures, SG is very prone to cyber attacks. If proper security measures are not taken, a cyber attack on SG can potentially bring about a huge catastrophic impact on the whole grid and thus to the society. Thus, cybersecurity in SG is treated as one of the vital domains by NIST (National Institute of Standards and Technology) and FERC (Federal Energy Regulatory Commission) [1].

In this paper, we will focus on the security of Advanced Metering Infrastructure (AMI), which is one of the most crucial components of SG. AMI serves as a bridge for providing bidirectional communication between user domain and utility domain [2]. This sophisticated infrastructure forms a high speed media to exchange information flow between these two domains. The main functionalities of AMI encompass bidirectional communication for power measurement facilities, assisting adaptive power pricing and demand side management, providing self-healing ability and interfaces for other systems, etc. [3]. AMI usually constitutes three major types of components, namely, 1) smart meter, 2) data concentrator, and 3) central system (a.k.a AMI headend), and bidirectional communication network among those components. Being a complex system in itself, AMI is exposed to various security threats like privacy breach, energy theft, illegal monetary gain, and other malicious activities. As AMI is directly related to revenue earning, customer power consumption and privacy, the utmost important is to secure its infrastructure.

In order to protect AMI from malicious attacks, we look into the Intrusion Detection System (IDS) aspect of security solution. We can define IDS as a monitoring system for detecting any unwanted entity into a targeted system (like AMI in our context). We treat IDS as a second line security measure after the first line of AMI security techniques like encryption, authorization and authentication such as [4]. However, Cleveland [5] stresses that these first line security solutions alone are not sufficient for securing AMI.

IDS can be signature-based, specification-based, and anomaly-based [6]. A signature-based IDS builds a back list of attacks. It is not suitable for AMI because new types of attacks may introduce in AMI as an emerging system. On the other hand, a specification-based IDS can be a potential solution for AMI according to [6] and [7]. Nonetheless, developing a specification for AMI networks is neither easy nor cost effective. As AMI becomes mature gradually, fresh specifications need to be included. Hence, changing specifications in all key IDS sensors would be expensive and cumbersome. In this research, we choose to employ anomaly-based IDS using data mining approaches. However, instead of considering...
conventional static mining techniques, we elect stream mining, precisely “evolving data stream mining”, as we believe it to be a more realistic approach in real-world monitoring and intrusion detecting for AMI.

In this paper, we propose a new AMI IDS architecture based on the AMI architecture presented by OPENMeter [8], which is a project deployed by several European countries to reduce gap between the state-of-the-art technologies and AMI’s requirements. We use the data stream mining algorithms available in the Massive Online Analysis (MOA) software [9], [10] in order to simulate the IDS systems of the proposed architecture.

The contributions of this research are that: 1) We have proposed a reliable and pragmatic IDS architecture for AMI; 2) We have conducted a set of experiments on a public IDS dataset using state-of-the-art data stream mining techniques and observed their performances; and 3) We have performed a feasibility study of applying these data stream mining algorithms for each component of the proposed IDS architecture.

This paper is a significantly improved and extended version of the paper [11] presented at the 2012 Pacific Asia Workshop on Intelligence and Security Informatics.

The remaining of this paper is organized as follows. In Section II, we provide a brief description of AMI. Section III deals with existing works on IDS in AMI. We give the detailed description of our proposed architecture in Section IV. Experimental setups for a feasibility study on applying data stream mining techniques for IDS purpose is presented in Section V. Results of the experiments are presented in Section VI. Discussions on the results and the feasibility analysis are given in Section VII. Finally, we conclude this paper in Section VIII with our future plan for extending this research.

II. Advanced Metering Infrastructure

AMI is an updated version of AMR (Automatic or Automated Meter Reading) [2], [12]. Present traditional AMR helps a utility company in reading meters through one way communication. However, as AMR cannot meet the current requirements for two-way communication and others, AMI is introduced.

AMI comprises of smart meters, data concentrators, central system (AMI headend), and the communication networks among them. These AMI components are usually located in various networks [6] and different realms like public and private ones [13]. Figure 1 gives a pictorial view of AMI integration in a broader context of power generation, distribution, etc. From this figure, we can see that smart meter, responsible for monitoring and recording power usage of home appliances etc., is the key equipment for consumers. Home appliances and other integrated devices/systems like water and gas meters, IHD (In Home Display), PEV (Plug-in Electric Vehicle) / PHEV (Plug-in Hybrid Electric Vehicle), smart thermostat, rooftop PV (Photovoltaic) system, etc. constitute a HAN (Home Area Network), which is connected to the smart meter. For communicating among these constituents, Zegbee or PLC (Power Line Communication) can be used. A number of individual smart meter communicates to a data concentrator through NAN (Neighborhood Area Network), WiMAX, cellular technologies, etc. are possible means for this network. A number of data concentrator are connected to an AMI headend in the utility side using WAN (Wide Area Network). Various long-distance communication technologies like fiber optic, DLS (Digital Subscriber Line), etc. are used in WAN. The AMI headed located in the utility side consists of MDMS (Meter Data Management System), GIS (Geographic Information System), configuration system, etc. These subsystems may build a LAN (Local Area Network) for inter communication. We characterize the nature of each AMI component and the data it handles in Table I.

III. Related Works

Few researches have been done so far for IDS in AMI. In [15], using a multi-layer network architecture scheme for whole SG including SCADA and AMI, Zhang et al. propose a distributed IDS architecture. Three IDSs would be placed in HAN, NAN, and WAN. Two clonal selection algorithms named CLONALG and AIRS2Parallel, which are derived from artificial immune system (AIS) and Support Vector Machine (SVM) are used for detecting anomaly assuming that data can be investigated anytime.

In [6], Berthier et al. discuss various types of IDSs and its possible components. An AMI monitoring architecture, proposed by these authors for AMI, uses a distributed system where sensors located in meter network to process anomaly related data. Upper level alerts collection and coordination of sensors’ tasks are accomplished by a central system. Resource requirements for this IDS architecture are: network configuration, protocol specifications, system and network security policies, and statistical profiles. The belief of specification-based IDS would be best approach for AMI by these authors is for following reasons: specification-based IDS has better accuracy level over signature-based IDS; lack of empirical data to build a blacklist of signatures; and limited number of protocols and applications will be monitored in AMI and

<table>
<thead>
<tr>
<th>TABLE I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARACTERISTICS OF SMART METER, DATA CONCENTRATOR, AND AMI HEADEND.</td>
</tr>
<tr>
<td>Smart meter</td>
</tr>
<tr>
<td>Similarity</td>
</tr>
<tr>
<td>Differences</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

...
for this specification would be cost-effective as AMI is a controlled environment. To extend their work, Berthier and Sanders in [7] use sensors, characterized with specification-based intrusion detection mechanism, placed in key access points to monitor network, transport, and application layers in the OSI model. Through studying constraints, state machine, and requirements, authors build four rules to detect traffic modification, injection, replay, compromised meters, preventing large set of meters from a malicious node, and DOS (Denial of Service) attacks. Moreover, they emulate AMI environment where these four rules test the performance. At the application-layer, a formal verification of the specifications and monitoring operations are conducted.

IV. PROPOSED IDS ARCHITECTURE

Let us look at the first component of AMI, namely the smart meter. Along with houses of ordinary people, smart meters are also installed in crucial places like companies, banks, hospitals, educational institutes, government agencies, parlaments, and presidential residences. Thus, the security of smart meters is a vital issue.

To our best knowledge, current smart meters do not possess IDS facility yet. If we are to furnish smart meters with IDS, one possible approach is to develop an embedded software for IDS, such as the one proposed in [16], and update the firmware of the smart meter to include this embedded IDS. Although this can be done with relatively ease, the main problem is the limitation of computing resources in the current smart meters. They are mostly equipped with low-end processors and limited amounts of main memory (in kilobyte range) [13]. Although this may change in a near future, since a good number of smart meters has already been deployed in many developed counties, it is not very easy to replace them or upgrade those existing ones with more powerful resources. Since a smart meter is supposed to consume most of its processor and main memory resources for its core businesses (such as recording electricity usage, interaction with other smart home appliances, and two-way communication with its associated data concentrator and ultimately the headend), only a small fraction of its already limited resources is available for IDS’ data processing purpose.

We try to solve this problem of resource scarcityness by proposing to use a separate IDS entity, either installed outside the smart meter (for existing ones) or integrated within the smart meter (for new ones). We name such an entity a “security box”. A possible design of smart meter with this security box is provided in Figure 2(a) based on the one presented in [17]. Here, we show security box as a simple meter IDS. However, it is open for this component to cover other security functions like firewall, encryption, authorization, authentication, etc. Care should be taken that the security box for smart meter should not be too expensive and hence should be equipped with resources just enough to perform computations for IDS (and other security-related calculations, if applicable) at the meter level. The proposed configuration of a meter IDS is provided in Figure 2(b).

It should be noted that our proposed IDS architecture follows a sequential process. Communication data from various sources are inserted to Acceptor Module. Pre-processing Unit is responsible for producing data according to predetermined attributes by monitoring the communication data. This generated data would treat as input for Stream Mining Module. Stream Mining Module runs a data stream mining algorithm over the data generated by Pre-processing Unit. Decision Maker Unit decides whether it should trigger an alarm or not. This module also keeps records of the information associated with attacks. These records will be used for further analysis and improving the attack database.

The proposed IDS architecture for the other two types of AMI’s components, data concentrator and AMI headend, is more or less similar to that of smart meter IDS. Again, the security boxes for those components can be either inside (in the form of software or add-on hardware card) or outside (in
the form of dedicated box or server). In order to simultaneously monitor a large number of data flows received from a large number of smart meters and detect security threats, such a security box hardware (or the host equipment in the case of software) must be rich in computational resources.

The complete IDS architecture for the whole AMI is shown in Figure 3(a). For inter-communication, IDSs can use separate network as advocated in [2]. Though this dedicated network is expensive, it increases reliability. If IDSs use the same network as other AMI data, in the event of a node being compromised by an attacker, the purpose of the whole IDS system will be defeated.

The flow chart for IDS from smart meter to AMI headend is depicted in Figure 3(b). Likewise, IDS also can also work reversely from headend to smart meter. It should be noted that some devices like O&M modules can be connected to IDS locally.

This architecture does not depend on any specific protocols. For this reason, legacy as well as newly coined protocols can be used with it. The IDS of a smart meter will monitor the flow of both incoming and outgoing data. Whenever it encounters any anomaly data, it will trigger an alarm to the IDS at the next level to further investigate the data. This is because the current IDS may face such kind of anomaly for the first time. This IDS should have enough storage to keep information about the anomaly and can send this information to the next IDS.

For all three types of IDSs for three respective AMI components, we believe that it is more practical to regard the data it as a “stream” in the AMI’s network. That means, the data received by each component of AMI is sequentially continuous, much larger in size than the device’s main memory (however large it is), and most importantly a mining algorithm can trace a particular piece of data for a very limited number of times (in most cases only once). Thus, we propose to explore a number of data stream mining algorithms to detect the anomalous events or attacks for all three types of IDSs.

V. EXPERIMENTAL SETUP

This section describes the datasets we use in our experiment and the data stream mining algorithms that we explore.

A. Datasets

Since AMI can be treated as a combination of computer network and the power system with some additional new characteristics, some communication scenarios of a computer network can resemble those of an AMI network. For example, some attacks like blocking data and theft of information are common in both networks. Since no real AMI transaction dataset is publicly available to our best knowledge, the widely-used public KDD Cup 1999 dataset [18] for intrusion detection in computer networks is selected to be used in our experiment. This dataset can be regarded as an evolving stream (a.k.a concept drift) dataset in which the sequence of events of normal network transactions and attacks are continuously happening and also changing over time [19].

This dataset is a version of the generated dataset through the 1998 Intrusion Detection Evaluation Program initiated by DARPA (Defense Advanced Research Projects Agency, USA) and managed by MIT Lincoln Labs [20]. From seven weeks of network traffic, raw training data, about four gigabytes of compressed binary TCP dump data, was processed into about five million connection records. At the same way, for two weeks, test data was extracted from two million connection records. The dataset has 41 features as well as training and testing sets have 24 and 38 distinct type of attacks respectively. However, these attacks can be categorized into 5 broad types which are: 1) normal 2) denial-of-service (DOS) 3) unauthorized access from a remote machine (R2L) 4) unauthorized access to local super user (root) privileges (U2R), and finally, 5) surveillance and other probing.

The original data set released for the KDD Cup 1999 contains 5,209,460 network transactions. We name this as the Full Dataset. However, this full version of dataset contains many redundant recordings as well as repeating items of DOS. Also, it has biased distribution of various attack types which makes accurate classifications of U2R and R2L difficult. Thus, Tavallaee et al. [21] proposed an improved version of the KDD Cup 1999 dataset to serve as a better benchmark dataset for IDS research. It contains a total of 148,517 network transactions. We call this data the Improved Dataset. The number of transactions in both Full and Improved Datasets are given in Table II.
Fig. 3. (a) Architecture of whole IDS in AMI (b) Intrusion detection procedure from smart meter to AMI headend. (CI = Concentrator Interface; DC-IDS = Data Concentrator IDS; HE-IDS = Headend IDS; M-IDS = Meter IDS; MI = Meter Interface; MUMI = Multi-utility Meter Interface; O&M = Operations and Maintenance; SI = (Central System) Interface.)

TABLE II

<table>
<thead>
<tr>
<th>Type of transaction</th>
<th>Number of network transaction instances</th>
<th>Full</th>
<th>Improved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training</td>
<td>Testing</td>
<td>Training</td>
</tr>
<tr>
<td>Normal</td>
<td>972,781</td>
<td>60,593</td>
<td>67,343</td>
</tr>
<tr>
<td>R2L</td>
<td>1,073</td>
<td>11,980</td>
<td>942</td>
</tr>
<tr>
<td>U2R</td>
<td>105</td>
<td>4,437</td>
<td>105</td>
</tr>
<tr>
<td>DOS</td>
<td>3,883,370</td>
<td>229,833</td>
<td>45,927</td>
</tr>
<tr>
<td>Probing</td>
<td>41,102</td>
<td>4,166</td>
<td>11,656</td>
</tr>
<tr>
<td>Total</td>
<td>4,898,431</td>
<td>311,029</td>
<td>125,973</td>
</tr>
</tbody>
</table>

B. Algorithm Explored

We use Massive Online Analysis (MOA) [9], [10] in our experiment. It is an open source data stream mining framework. Though there are various static and evolving stream mining classification algorithms available in this software environment, we are only interested in the evolving ones. Evolving classification algorithms care about the concept change or distribution change in the data stream.

There are 16 evolving data stream classifiers in MOA. After an initial trial on those 16 classifiers, the 7 ensemble learners listed in Table III are selected. (From now on, we will write method names in MOA in *italics*. In many cases, MOA’s method names are self-explanatory.) These seven methods are chosen because of their higher accuracy (evaluated with *EvaluatePrequential* [22] for all classifiers except *EvaluateInterleavedChunks* for *AccuracyUpdatedEnsemble* classifier) for the training set.

Different variants of Hoeffding Tree [31] are used as the base learner in MOA. The algorithm establishes the Hoeffding bound, which quantifies the number of observations required to estimate necessary statistics within a prescribed precision. Mathematically, Hoeffding bound can be expressed using Equation 1.

\[
\epsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}}
\]

This equation says that the true mean of a random variable of range \(R \) will not differ from estimated mean after \(n \) independent examples or observations by more than \(\epsilon \) with probability \(1 - \delta \).

Brief descriptions of the seven selected ensemble learners are as follows.

AccuracyUpdatedEnsemble: This is a block-based ensemble classifier, an improved version of AWE (Accuracy Weighted Ensemble), for evolving data stream. AUE makes this enhancement by using online component classifiers which updates the base classifiers rather than only adjust their weights as well as updating them according to present distribution. In addition, this method also leverages the drawback of AWE by redefining the weighting function. In our experiment, we have received a better result by using *HoeffdingTreeNBAdaptive* as the component classifier.

ActiveClassifier: The motivation of active learning algorithm is to build a model from as few amount of labeled data as possible [24]. The principal reason behind this is labeling of data is expensive so we may not except that all training data are labeled. This is an important assumption in an error prone network. Various active learning strategies are used for maximizing prediction correctness under assumption that there exists concept drift in data stream.
To describe the setup for this classifier, let consider X_t is an instance at time t with label y_t. Thus, data stream is $X_1, X_2, X_3, \ldots, X_{t-1}, X_t, X_{t+1}, \ldots$. The budget for the stream is B which indicates that the portion of incoming data are labeled. For example, if $B = 0.4$, then we expect 40% of the stream data has been labeled. An Active Learning Strategy (X_1, B, \ldots) method is called to decide for current instance whether the framework should call for true class label or not. This method can use additional parameters depending on the underline implemented strategy like random strategy, fixed Uncertainty strategy, variable uncertainty strategy, uncertainty strategy with randomization etc. For change detection, [29] is used in this work.

LeveragingBag: Mainly two randomization improvement techniques are applied to enhance bagging performance in this classifier. For the first improvement, Bifet et al. [25] propose to use higher value of λ to compute the Poisson distribution’s value which would increase re-sampling weights. For the second enhancement, randomization is added at the output of the ensemble using error-correcting output codes. When a new instance x arrives it is assigned to the class with nearest binary code. An error-correcting code can be viewed as a form of voting in which a number of incorrect votes can be corrected. The main motivation for using random code instead of deterministic codes is that each classifier in ensemble will predict a different function which may reduce the correlation effects among the classifiers and thus, the diversity of the ensemble will be increased. Each classifier m and class c are assigned binary value $\mu_m(c)$ in an uniform, independent, and random way. Exact half of the classes are mapped to $\mu = 0$ and then these trees are combined using perceptron classifiers by adopting the stacking approach. Adaptive naive Bayes Hoeffding Trees with limited attributes show better performance instead of using individually naive Bayes or majority class for prediction.

OzaBagAdwin: The main idea of this algorithm is to use a sliding window, not fixed a priori, whose size is recomputed in online according to the change rate observed from the data in window itself. The window will grow or shrink keeping pace with change in data stream. For this reason, OzaBagAdwin uses ADWIN2, an enhanced version of ADWIN in term of time and memory efficiency. This change detection technique holds a window of length W with $O(\log W)$ memory and update time. The classifier provides a performance guarantee by bounding the rates of false positives and false negatives.

OzaBagASHT: OzaBagASHT uses Adaptive-Size Hoeffding Tree (ASHT) with bagging. ASHT is derived from Hoeffding Trees with limited attributes, which differ with a maximum size or split nodes and size reduction mechanism for exceeding maximum value. The principal intuition behind this is: smaller trees adapt more quickly to changes and on the other hand, larger trees do better during periods with no or little change as they have been built on more data. Thus this method increases diverse trees. Due to the overflow of tree size, the algorithm takes two remedies: the first one is to delete the oldest node, the root, and all of its children except where the split has been made and the second one is to restart from a new root. The maximum legitimated size for the n-th ASHT tree is twice the maximum allowed size for the $(n-1)$-th tree. And each tree has a weight proportional to the inverse of the square of its error, and it monitors its error with the exponential weighted moving average (EWMA) with $\alpha = 0.01$. The initial tree size is 1.

SingleClassifierDrift: Single Classifier Drift is an evolving classifier with a wrapper on it for handling concept drift in data stream. For this, drift detection method (DDM) [29] or early drift detection method (EDDM) [30]. In DDM, the number of errors produced by learning model during prediction are controlled. This procedure is done by comparing the statistics of two windows where the first one contains all the data and the second one contains only the data from the beginning until number of errors increases. For EDDM, an enhanced version of DDM, the fundamental idea is to consider the distance between two error classifications instead of considering only the number of errors. Increasing the average distance between two errors and improving the prediction are the improvements of this method.

<table>
<thead>
<tr>
<th>Sr.</th>
<th>Method name in MOA</th>
<th>Description</th>
<th>Base Learner</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AccuracyUpdatedEnsemble</td>
<td>Accuracy Updated Ensemble (AUE)</td>
<td>HoeffdingTreeNBAdaptive</td>
<td>[23]</td>
</tr>
<tr>
<td>2</td>
<td>ActiveClassifier</td>
<td>Active Classifier</td>
<td>HoeffdingTreeNB</td>
<td>[24]</td>
</tr>
<tr>
<td>3</td>
<td>LeveragingBag</td>
<td>Leveraging Bagging</td>
<td>HoeffdingTreeNB</td>
<td>[25]</td>
</tr>
<tr>
<td>4</td>
<td>LimAttClassifier</td>
<td>Limited Attribute Classifier</td>
<td>LimAttHoeffdingTreeNBAdaptive</td>
<td>[26]</td>
</tr>
<tr>
<td>5</td>
<td>OzaBagAdwin</td>
<td>Bagging using ADWIN</td>
<td>HoeffdingTreeNB</td>
<td>[27], [28]</td>
</tr>
<tr>
<td>6</td>
<td>OzaBagASHT</td>
<td>Bagging using Adaptive Size Hoeffding Tree</td>
<td>ASHoeffdingTree</td>
<td>[28]</td>
</tr>
<tr>
<td>7</td>
<td>SingleClassifierDrift</td>
<td>Single Classifier Drift</td>
<td>HoeffdingTreeNBAdaptive</td>
<td>[29], [30]</td>
</tr>
</tbody>
</table>

Table III: Seven data stream classifier algorithms explored in our experiment.
C. Tuning Parameter Values

There are a number of parameters for each of the seven algorithms that we have selected. In order to tune parameter values for each algorithm, we perform the following procedure.

1) We first identify relevant parameters for which algorithm performance can be influenced. The identification process has been done with the help of corresponding literatures.

2) For each parameter a range of value has been selected. A batch has been created with this range of values for that individual parameter. The procedure helps us to measure the influence of corresponding parameter of the algorithm for this dataset.

3) Then we run the simulation with the ranges of values for all required parameter for every interested evolving algorithms. This procedure helps us to understand the combined effect of these parameters.

4) After all these simulations, we select parameter values for which higher accuracies are received.

For each of the two datasets, each of the seven algorithms is run for 10 times before we record the results in order to reduce stochastic effects of tuned parameter values.

VI. EXPERIMENTAL RESULTS

The performance of each of the 7 algorithms are measured in terms of the following 7 metrics.

1) Accuracy (%): the percentage of correctly classified network traffic instances divided by total number of instances.

2) Kappa Statistics (%): the measurement of inter-rater agreement for nominal or categorical items (attack categories in our case) [32].

3) Model size (KB): the size of classifier model in kilobytes.

4) Running time (seconds): the wall-clock time taken by the model.

5) Model cost (RAM-Hours): the amount of RAM (in gigabytes) allocated to the classifier model multiplied by time (in number of hours) the model has been deployed. This results in a combined metric of the model size and the running time. This pricing method is used by GoGrid cloud hosting service [33].

6) False positive rate (FPR) (%): the percentage of instances which are incorrectly classified as any kind of attacks (while they are actually normal).

7) False negative rate (FNR) (%): the percentage of instances which are incorrectly classified as normal (while they are actually attacks).

A. Results for Full Dataset

The performances of the seven algorithms on the test set of the Full Dataset are given in Table IV. From this Table, we can see in the test set, the best performer in term of accuracy is LeveragingBag whereas AccuracyUpdatedEnsemble is a poorest performer. Lowest RAM-Hours and time requirements are shown by ActiveClassifier. However, this classifier shows poor outcomes for accuracy, kappa statistic, FPR, as well as for FNR. LeveragingBag also receives better result for FPR, and FNR. The highest model cost is incurred by OzBagASHT. The performance of LimAttClassifier is impressive except that it is most costly in term of time requirement among the seven classifiers. SingleClassifierDrift also shows good results for time, memory consumption, FPR, etc. in spite of its bad performance for FNR. Both OzBagASHT and AccuracyUpdatedEnsemble do not show attractive performance, though both of them receive better FPR.

The accuracy comparison among the classifiers during the evaluation is depicted in 4.

Until around first 30,000 network transaction instances, all algorithms except AccuracyUpdatedEnsemble show about the same accuracy. After around 30,000 instances each classifier shows decreasing accuracy and reach its individual lowest accuracy at around 1.5 × 10^5 instances. After 1.5 × 10^5 instances, all classifiers show increasing accuracy. However, for the ending instances each classifier shows decreasing accuracy. This observed trend is because of the evolving (concept drift) phenomenon that the dataset exhibits.

To get a better understanding about the detection ability of concept drift of these selected classifiers, we take a snapshot for first 1,500 instances with a single concept drift (see Figure 5). From this figure, we see only OzBagASHT can detect the concept drift perfectly, although it shows poor performance for detecting static instances. Very bad performance is shown for detecting concept drift by ActiveClassifier and AccuracyUpdatedEnsemble. Though ActiveClassifier can detect concept drift, it performs a considerable large number misclassifications after the concept drift. Abrupt transition from R2L to DOS is almost smoothly identified by LimAttClassifier, OzBagAdwin, and SingleClassifierDrift. LeveragingBag shows better performance for detecting both usual instances and concept drift except small number of misclassifications after concept drift.

To predict the performance of these seven evolving classifiers both in static and evolving data, we use WindowClassificationPerformanceEvaluator evaluator with window...
TABLE IV
PERFORMANCES OF THE SEVEN CLASSIFIERS FOR THE TEST SET OF THE FULL DATASET.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy (%)</th>
<th>Kappa Statistics (%)</th>
<th>Model Size (KB)</th>
<th>Running Time (secs.)</th>
<th>Model Cost (RAM-Hours)</th>
<th>FPR (%)</th>
<th>FNR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuracyUpdatedEnsemble</td>
<td>92.72</td>
<td>83.11</td>
<td>705.66</td>
<td>34.27</td>
<td>6.48E-6</td>
<td>1.85</td>
<td>22.77</td>
</tr>
<tr>
<td>ActiveClassifier</td>
<td>94.67</td>
<td>87.28</td>
<td>134.55</td>
<td>3.46</td>
<td>1.23E-7</td>
<td>3.31</td>
<td>9.13</td>
</tr>
<tr>
<td>LeveragingBag</td>
<td>98.33</td>
<td>95.97</td>
<td>401.01</td>
<td>20.92</td>
<td>2.22E-6</td>
<td>0.78</td>
<td>5.15</td>
</tr>
<tr>
<td>LimAttClassifier</td>
<td>98.24</td>
<td>95.74</td>
<td>380.07</td>
<td>48.06</td>
<td>4.84E-6</td>
<td>0.78</td>
<td>5.26</td>
</tr>
<tr>
<td>OzaBagAdwin</td>
<td>98.00</td>
<td>95.18</td>
<td>295.88</td>
<td>37.77</td>
<td>2.96E-6</td>
<td>1.14</td>
<td>5.31</td>
</tr>
<tr>
<td>OzaBagASHT</td>
<td>96.48</td>
<td>91.57</td>
<td>5269.16</td>
<td>41.25</td>
<td>5.78E-5</td>
<td>1.86</td>
<td>7.86</td>
</tr>
<tr>
<td>SingleClassifierDrift</td>
<td>97.74</td>
<td>94.55</td>
<td>187.30</td>
<td>6.74</td>
<td>3.34E-7</td>
<td>1.07</td>
<td>6.79</td>
</tr>
</tbody>
</table>

Fig. 5. Detecting of concept drift by the seven classifiers (on the Full Dataset).

Fig. 6. Performances of the seven classifiers in dealing with both concept drift and static data (on the Full Dataset).

The model sizes for the seven classifiers are pictorially shown in Figure 7. For getting a better visualization of memory consumption nature among the classifiers, instead of using KB, we take \(\log(KB) \) for the model sizes. ActiveClassifier presents very low memory usage and so does SingleClassifierDrift except some fluctuations. Both LimAttClassifier and OzaBagAdwin show their moderate memory requirement. On the other hand, OzaBagASHT shows its highest memory requirement followed by AccuracyUpdatedEnsemble and LeveragingBag.

Almost the same nature as for memory requirement is shown by the seven classifiers for their running times (see Figure 8). Smaller time requirement is the characteristic for both ActiveClassifier and SingleClassifierDrift classifiers. Moderate time requirement can be found for four classifiers: LeveragingBag, OzaBagAdwin, OzaBagASHT, and LimAttClassifier respectively. The model cost (in RAM-hours) for each algorithm shown in Figure 9 shows the combined effect of the two factors: the model size and the running time.

B. Results for Improved Dataset

In case of the Improved Dataset, which is very small in size, the performances of the seven algorithms on the test set are given in Table V.

A graphical demonstration of accuracy comparison of the classifiers for Improved Dataset is presented in 10. AccuracyUpdatedEnsemble represents a quite bad performance at the beginning even though it shows a considerably better performance gradually. Same trend is shown by ActiveClassifier. SingleClassifierDrift shows a moderate performance where the rest four classifiers represent relatively better performances. However, LimAttClassifier shows the best performance among the seven classifiers.
TABLE V
PERFORMANCES OF THE SEVEN CLASSIFIERS FOR THE TEST SET OF THE IMPROVED DATASET.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy (%)</th>
<th>Kappa Statistics (%)</th>
<th>Model Size (KB)</th>
<th>Running Time (secs.)</th>
<th>Model Cost (RAM-Hours)</th>
<th>FPR (%)</th>
<th>FNR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccuracyUpdatedEnsemble</td>
<td>93.39</td>
<td>90.23</td>
<td>20632.44</td>
<td>3.96</td>
<td>2.16E-5</td>
<td>3.26</td>
<td>8.70</td>
</tr>
<tr>
<td>ActiveClassifier</td>
<td>89.26</td>
<td>84.19</td>
<td>420.43</td>
<td>0.28</td>
<td>3.20E-8</td>
<td>4.04</td>
<td>15.29</td>
</tr>
<tr>
<td>LeveragingBag</td>
<td>95.65</td>
<td>93.60</td>
<td>34375.00</td>
<td>1.62</td>
<td>1.85E-5</td>
<td>2.03</td>
<td>6.85</td>
</tr>
<tr>
<td>LimAttClassifier</td>
<td>96.59</td>
<td>95.02</td>
<td>24596.75</td>
<td>92.47</td>
<td>6.03E-4</td>
<td>2.49</td>
<td>3.39</td>
</tr>
<tr>
<td>OzaBagAdwin</td>
<td>96.65</td>
<td>94.21</td>
<td>10212.39</td>
<td>3.35</td>
<td>9.07E-6</td>
<td>2.13</td>
<td>5.55</td>
</tr>
<tr>
<td>OzaBagASHT</td>
<td>95.60</td>
<td>93.58</td>
<td>7724.45</td>
<td>3.16</td>
<td>6.48E-6</td>
<td>3.17</td>
<td>3.92</td>
</tr>
<tr>
<td>SingleClassifierDrift</td>
<td>93.97</td>
<td>91.09</td>
<td>1611.43</td>
<td>0.30</td>
<td>1.20E-7</td>
<td>2.49</td>
<td>8.23</td>
</tr>
</tbody>
</table>

Fig. 8. Running times by the seven classifiers (on the Full Dataset).

Fig. 9. Model costs by the seven classifiers (on the Full Dataset).

Fig. 10. Accuracies by the seven classifiers (on the Improved Dataset).

Fig. 11. Model sizes by the seven classifiers (on the Improved Dataset).

these four. A mentionable observation is all classifiers show increasing trend with increasing number of instances.

However, for the memory and the time requirement, ActiveClassifier shows an impressive result. Though it is of the worst performances for accuracy, kappa statistic, and FNR, it shows the best performance for memory and time usages. On the other hand, LimAttClassifier requires the highest amount of memory and time in spite of its better performances for accuracy, kappa statistic, FPR, as well as FNR. LeveragingBag shows a moderate performance with lowest FPR and considerable model cost. Reasonable performance is shown by both OzaBagAdwin and OzaBagASHT classifiers. One noticeable concern is that for all classifiers the accuracy and the kappa statistic decreases when compared to those of the Full Dataset due to reduction in the number of instances in this Improved Dataset.

For the model cost (see in Figure 13), the model size (Figure 11), and the running time (Figure 12) all classifiers keep the same order as we see in Table V. One important observation is that all classifiers consumed more memory than those for the Full Dataset. That means, for the Full Dataset, the model cost is in 10^{-5} range where in this case it is in 10^{-4} range.
VII. DISCUSSIONS

A. Feasibility of Using Data Stream Classifiers for AMI’s IDSs

Now, let us look into the feasibility of applying the some of the aforementioned seven data stream classifiers for AMI’s three different types of IDSs.

For the smart meter IDS, the data stream algorithm should cope with the main memory primarily because a smart meter will not be accessed as frequently as like the rest of two components in AMI. Processed number of instances should be in reasonable range which will be determined by the amount of available main memory. However, additionally, the smart meter has to deal with small amount of data generated from smart devices in HAN as well as some operation and maintenance services. Because of the relaxed time requirement, data can be visited for more than one pass. Nonetheless, for this purpose, the complete set of instances must be kept in the memory and that is not feasible for the smart meter. Considering these constraints, we can see that only ActiveClassifier and SingleClassifierDrift classifiers that exhibits limited memory usage are the possible candidates. However, though ActiveClassifier shows very attractive performance in memory and time, it shows quite poor performances for other metrics. On the other hand, SingleClassifierDrift perform very well in memory and time consumption as well as moderate performances for other metrics. Other algorithms are not restrictive memory friendly even if the number of processed instances is reduced.

For the data concentrator IDS, the data flow is more frequent than a smart meter and less than a headend. Regardless of whether it is a implemented as a dedicated hardware or software installed on the data concentrator, a moderate amount of memory will be available for the data concentrator IDS. So, although the speed requirement for an IDS algorithm for the data concentrator is much higher than that of the smart meter’s, the memory restrictions can be relaxed. LeveragingBag is a promising classifier for this IDS as it has both moderate time and memory requirements with reasonable accuracy and FPR. However, still it has higher FNR which needs to be further reduced. SingleClassifierDrift should be enhanced in terms accuracy, FPR, and FNR to make it qualified for a data concentrator IDS.

For the IDS in AMI Headend, the algorithm must exhibit a response time of a fraction of second to a few seconds. Data speed is very high, and so the IDS has to process a huge number of instances within this limited time. The memory is naturally abundant. So far, from our analysis, we are not able to find a perfect classifier which will make a tradeoff between time and memory with acceptable accuracy, FPR, and FNR. One possible, albeit not perfect, candidate is ActiveClassifier. It can process the data very quickly, but is not able to provide luxurious levels of accuracy, FPR, and FNR. The same observation applies for SingleClassifierDrift. Other algorithms, especially LimAttClassifier, cannot be deployed in this system due to their higher time requirement.

The algorithms studied here are ensemble classifiers depend on a collection of base classifiers. So, improvements can be done both in the base and the ensemble classifiers. For our experiment, we use default value 10 for ensemble size. Reduction in ensemble size may not bring better accuracy and in contrary, increasing the size will be costly (both in time and memory). ActiveClassifier has very promising features like limited time and memory requirement and these can be the reasons for its relatively inferior performance in other metrics. In addition, this classifier assumes that not all data are labeled, which is a realistic assumption in an attack prone network where various kinds of new attacks can be introduced. Accuracy of LimAttClassifier can be further improve using higher number of attributes but this will be more expensive in terms of time and memory.

B. Comparison with Existing Works

Our work is related to Berthier et al. [6], [7] and Zhang et al. [15]. Among these two, our work is closely related with Zhang et al. as they also use anomaly based IDS.
However, they propose IDS architecture for complete SG where we concentrate on AMI security with IDS. Moreover, we emphasize that it is more practical to apply data stream mining techniques rather than static data mining techniques in AMI where the memory requirements and the time costs are the very concerned issues.

Berthier et al. emphasize on specification based IDS for AMI due to AMI’s controlled network and lack of training data for anomaly based IDS. They propose to use sensor based architectural scheme. On the other hand, we have proposed anomaly based IDS using stream data mining in network layer in OSI model as we believe, building and updating specification for AMI will be expensive eventually. For this we focus on security of individual meter. In stead of placing IDS sensors in key locations, we precisely have mentioned deployment places of IDSs in AMI. Optimizing sensor location will also become a significant issue in designing IDS infrastructure.

Nonetheless, we are not able to directly compare our experimental results with those of the two methods mentioned above. This is because we have a different (and more realistic) assumption that the data is in form of stream rather than static, and thus the dataset in its entirety is never available to the mining algorithm at any given point of time.

VIII. CONCLUSION AND FUTURE WORKS

In this research, we have proposed an architecture for the comprehensive IDS system in AMI which is more reliable, dynamic, and considers real time nature of traffic for each component in AMI. Moreover, the feasibility of using data stream classifiers for each AMI’s component IDS is assessed. Our results show that some data stream mining algorithms can meet the restrictive resource requirements like memory at the smart meter level. However, more improvement require to deploy them in these three IDSs. Several obvious issues like characteristic of traffic in AMI, co-ordination among the IDSs, registering dynamic device to smart meter, designing special mining techniques for meeting specific requirement for each component in AMI, etc. come in light from this research. And through empirical analysis, we extract the strengths and weaknesses of the existing data stream classifiers for solving this problem. Thus, this research will help the corresponding stakeholders to pay attention to take required steps as well as encourage future researchers to continue further exploration to solve this particular problem.

The planned extensions of this research, listed below, are based on the findings of the present work.

- The next focus for future work is to build a setup for AMI. This can be done either as a simulation in lab or as a physical test bed. For simulation, various simulation tools are available nowadays. The meter simulation modules can be deployed in various virtual machines. For data concentrator, either physical device or virtual machine can be used. On the other hand, for setting up a physical test bed environment, various experts in networking and communication, security, data mining, etc. needs to be involved. Various possible attacks can be introduced in such an environment. This will help us to understand complete system in practice. In addition, intrusion data can be generated from this setup with latest attack scenarios.
- Even though the existing evolving algorithms can deal with restricted memory, the parameter values should be tuned after certain interval as data may always be evolving. In AMI, a distributed system, an online parameter value tuning mechanism for each particular node will be studied in details.
- One of the main challenges for applying data mining approach is in using of existing data stream mining algorithms with considerable number of parameters. Tuning values for these parameters is cumbersome for these mining algorithms. So, developing a novel data stream mining algorithm with no or least number of parameters will be another extension of the present research.
- Fault tolerance and risk assessment of the deployed IDS are to be investigated and analyzed thoroughly.
- A hybrid solution (like anomaly and signature based IDS, anomaly and limited specification based IDS) may bring more robustness to the whole IDS system and will be studied in details.

In summary, our proposed works for the next phase will help us better understand the AMI’s IDS system though its implementation and at the same time improve the intrusion detection capacity for the integral IDSs in AMI.

REFERENCES

Mr. Mustafa Amir Faisal is a graduate student in Computing and Information Science Program at Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates. His graduate research is on smart grid cybersecurity using applying data mining and machine learning techniques. He is specializing in the security of Advanced Metering Infrastructure (AMI) of smart grid. Before his graduate studies, Mr. Faisal worked as a software engineer in Hawar IT, which is a well-known offshore company in his home country, Bangladesh. His current research interests include data mining, machine learning, security, smart grid, distributed systems, and social networks.

Dr. Zeyar Aung received his Ph.D. in Computer Science from the National University of Singapore in 2006. He is currently an Assistant Professor at the Computing and Information Science Program of Masdar Institute of Science and Technology, Abu Dhabi, United Arab Emirates, and also a Research Affiliate at Massachusetts Institute of Technology (MIT). Prior to that, he worked as a Research Fellow at the Data Mining Department of the Institute for Infocomm Research, Singapore.

Dr. Aung’s current research interests include data mining, machine learning, smart grid, cybersecurity, wireless sensor networks, and spatiotemporal databases. His past research interests were in bioinformatics and chemoinformatics. As of March 2012, Dr. Aung has published 20 research articles in various scientific journals and conferences. He has received a total of 120+ citations for his publications.

Dr. John R. Williams holds a BA in physics from Oxford University, a MS in physics from UCLA and a Ph.D. from Swansea University. His area of specialty is large scale computer simulation. Dr. Williams is internationally recognized in the field of computational algorithms and has authored two books and over 100 publications. For the past eight years, his research has focused on architecting of large scale distributed simulation systems. He teaches graduate courses on Modern Software Development and on Web System Architecting.

Presently Dr. Williams is Director of MITs Auto-ID Laboratory that researches the Internet of Things. He is project leader of the Smart Grid Simulator Program whose goal is to develop the next generation electric grid. He is involved in a number of other projects for industry, including developing optimizing data centers for Ford and Dassault. Dr. Williams is on the editorial advisory board for the International Journal for Computer-Aided Engineering. Dr. Williams consults to companies in the U.S., U.K., Ireland, and Japan and has spent much time in Japan collaborating with Keio University and the University of Osaka on the use of educational technology.

Dr. Abel Sanchez holds a Ph.D. from the Massachusetts Institute of Technology (MIT). His areas of specialty include Radio Frequency Identification (RFID), Information Engineering, and Engineering Complex Systems. He teaches graduate courses in Software Construction, Software Engineering, and Software Architecture. For the past eight years, his research has focused on architecting of large scale distributed simulation systems.

Dr. Sanchez is the founder and Chief Software Architect of the Open Source RFID platform project. Dr. Sanchez software systems are used by Samsung, NEC, NTT, Hitachi, Motorola, SAP, IBM, and Microsoft. Other software initiatives are in use by Sandia National Laboratories, MIT, and by several organizations in East Asia and Europe. He is currently a Principal Investigator in research projects with SAP, Phillip Morris International, Schlumberger, Ford Motor Company, Dassault, and Microsoft. The projects are simulating the USA’s pharmaceutical supply chain, developing a high performance computing platform using multi-core and general purpose graphics processing units, domestic sensors and robots to monitor human health and energy management, and optimizing data centers.